Tel:86 021 3100 7137

Share with us your publications using BT LAB product and get free products.
Home > Product > ELISA Kit > Human Cryptochrome-1, CRY1 ELISA Kit

Human Cryptochrome-1, CRY1 ELISA Kit

Human Cryptochrome-1, CRY1 ELISA Kit

Product Summary

Size: 48T,96T

Sensitivity: 7.31ng/L

Detection range: 15-3000ng/L

Sample type: Serum, plasma, cell culture supernates

Reactive with: Human

Product Summary

Size: 48T,96T

Sensitivity: 7.31ng/L

Detection range: 15-3000ng/L

Sample type: Serum, plasma, cell culture supernates

Reactive with: Human

Product overview

Full product name

Cryptochrome-1

Code

E5126Hu

Assay type

Sandwich

Size

48T,96T

Sensitivity

7.31ng/L

Detection range

15-3000ng/L

Sample type

Serum, plasma, cell culture supernates

Species

Human

Storage

2-8ºC

Assay time

1h 30m

Background

Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. CRY1 and CRY2 have redundant functions but also differential and selective contributions at least in defining the pace of the SCN circadian clock and its circadian transcriptional outputs. More potent transcriptional repressor in cerebellum and liver than CRY2, though more effective in lengthening the period of the SCN oscillator. On its side, CRY2 seems to play a critical role in tuning SCN circadian period by opposing the action of CRY1. With CRY2, is dispensable for circadian rhythm generation but necessary for the development of intercellular networks for rhythm synchrony. Capable of translocating circadian clock core proteins such as PER proteins to the nucleus. Interacts with CLOCK-ARNTL/BMAL1 independently of PER proteins and is found at CLOCK-ARNTL/BMAL1-bound sites, suggesting that CRY may act as a molecular gatekeeper to maintain CLOCK-ARNTL/BMAL1 in a poised and repressed state until the proper time for transcriptional activation. Represses the CLOCK-ARNTL/BMAL1 induced transcription of BHLHE40/DEC1. Represses the CLOCK-ARNTL/BMAL1 induced transcription of ATF4, MTA1, KLF10 and NAMPT (By similarity). May repress circadian target genes expression in collaboration with HDAC1 and HDAC2 through histone deacetylation. Mediates the clock-control activation of ATR and modulates ATR-mediated DNA damage checkpoint. In liver, mediates circadian regulation of cAMP signaling and gluconeogenesis by binding to membrane-coupled G proteins and blocking glucagon-mediated increases in intracellular cAMP concentrations and CREB1 phosphorylation. Inhibits hepatic gluconeogenesis by decreasing nuclear FOXO1 levels that downregulates gluconeogenic gene expression (By similarity). Besides its role in the maintenance of the circadian clock, is also involved in the regulation of other processes. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by binding to glucocorticoid response elements (GREs). Plays a key role in glucose and lipid metabolism modulation, in part, through the transcriptional regulation of genes involved in these pathways, such as LEP or ACSL4 (By similarity). Represses PPARD and its target genes in the skeletal muscle and limits exercise capacity (By similarity). Plays an essential role in the generation of circadian rhythms in the retina (By similarity). Represses the transcriptional activity of NR1I2 (By similarity).

UniProt accession

MASS(Da)

66,395

GeneID

1407

Synonyms

CRY 1;CRY1;Cryptochrome-1

Gene names

CRY1

Research area

Neuroscience

Target protein

CRY1

Components

Components Quantity
Pre-coated ELISA Plate 12 * 8 well strips x1
Standard solution 0.5ml x1
Standard diluent 3ml x1
Streptavidin-HRP 6ml x1
Stop solution 6ml x1
Substrate solution A 6ml x1
Substrate solution B 6ml x1
Wash buffer concentrate (25x) 20ml x1
Biotinylated antibody 1ml x1

Protocol data

These standard curves of Human Cryptochrome-1, CRY1 ELISA Kit are provided for demonstration only. A standard curve should be generated for each set of samples assayed.

Concentration O.D. Average Corrected
1600ng/L 2.334 2.223 2.175
2.112
800ng/L 1.288 1.336 1.288
1.383
400ng/L 0.826 0.833 0.786
0.841
200ng/L 0.377 0.378 0.33
0.379
100ng/L 0.212 0.236 0.188
0.259
0ng/L 0.049 0.047 0
0.045

Precision

We measured random samples of E5126Hu within the same batch/lot to ensure the consistency of the kits' performances.

Intra/Inter-Assay Sample n Mean Standard Deviation CV%
Intra-Assay 1 18 631.1 39.65 6.3
Intra-Assay 2 18 969.3 33.11 3.4
Intra-Assay 3 18 347.9 20.12 5.8

Protocols

References

Customer reviews and Q&As

No reviews
No reviews

Associated products

Product size

Price

  • 48T

    $320.00

  • 96T

    $458.00

Add to Cart

Lead time: Within one week

We are continuously updating our ELISA Kit catalog with advanced verified products. If you can not download the datasheet please send your request of our latest datasheet.

Newsletter

Sign up

Newsletter

Sign up